3.1182 \(\int \frac{\sqrt{d+e x^2} (a+b \tan ^{-1}(c x))}{x^6} \, dx\)

Optimal. Leaf size=224 \[ \frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}-\frac{b c \left (24 c^4 d^2-20 c^2 d e-15 e^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{120 d^{3/2}}+\frac{b \left (3 c^2 d+2 e\right ) \left (c^2 d-e\right )^{3/2} \tanh ^{-1}\left (\frac{c \sqrt{d+e x^2}}{\sqrt{c^2 d-e}}\right )}{15 d^2}+\frac{b c \left (12 c^2 d-e\right ) \sqrt{d+e x^2}}{120 d x^2}-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4} \]

[Out]

(b*c*(12*c^2*d - e)*Sqrt[d + e*x^2])/(120*d*x^2) - (b*c*(d + e*x^2)^(3/2))/(20*d*x^4) - ((d + e*x^2)^(3/2)*(a
+ b*ArcTan[c*x]))/(5*d*x^5) + (2*e*(d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/(15*d^2*x^3) - (b*c*(24*c^4*d^2 - 20
*c^2*d*e - 15*e^2)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/(120*d^(3/2)) + (b*(c^2*d - e)^(3/2)*(3*c^2*d + 2*e)*ArcT
anh[(c*Sqrt[d + e*x^2])/Sqrt[c^2*d - e]])/(15*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.352288, antiderivative size = 224, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.391, Rules used = {271, 264, 4976, 12, 573, 149, 156, 63, 208} \[ \frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}-\frac{b c \left (24 c^4 d^2-20 c^2 d e-15 e^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{120 d^{3/2}}+\frac{b \left (3 c^2 d+2 e\right ) \left (c^2 d-e\right )^{3/2} \tanh ^{-1}\left (\frac{c \sqrt{d+e x^2}}{\sqrt{c^2 d-e}}\right )}{15 d^2}+\frac{b c \left (12 c^2 d-e\right ) \sqrt{d+e x^2}}{120 d x^2}-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + e*x^2]*(a + b*ArcTan[c*x]))/x^6,x]

[Out]

(b*c*(12*c^2*d - e)*Sqrt[d + e*x^2])/(120*d*x^2) - (b*c*(d + e*x^2)^(3/2))/(20*d*x^4) - ((d + e*x^2)^(3/2)*(a
+ b*ArcTan[c*x]))/(5*d*x^5) + (2*e*(d + e*x^2)^(3/2)*(a + b*ArcTan[c*x]))/(15*d^2*x^3) - (b*c*(24*c^4*d^2 - 20
*c^2*d*e - 15*e^2)*ArcTanh[Sqrt[d + e*x^2]/Sqrt[d]])/(120*d^(3/2)) + (b*(c^2*d - e)^(3/2)*(3*c^2*d + 2*e)*ArcT
anh[(c*Sqrt[d + e*x^2])/Sqrt[c^2*d - e]])/(15*d^2)

Rule 271

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x^(m + 1)*(a + b*x^n)^(p + 1))/(a*(m + 1)), x]
 - Dist[(b*(m + n*(p + 1) + 1))/(a*(m + 1)), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 4976

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u =
 IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Dist[a + b*ArcTan[c*x], u, x] - Dist[b*c, Int[SimplifyIntegrand[u/(1 + c^
2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m +
2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2, 0] &&
  !ILtQ[(m - 1)/2, 0]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 573

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{d+e x^2} \left (a+b \tan ^{-1}(c x)\right )}{x^6} \, dx &=-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-(b c) \int \frac{\left (d+e x^2\right )^{3/2} \left (-3 d+2 e x^2\right )}{15 d^2 x^5 \left (1+c^2 x^2\right )} \, dx\\ &=-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{(b c) \int \frac{\left (d+e x^2\right )^{3/2} \left (-3 d+2 e x^2\right )}{x^5 \left (1+c^2 x^2\right )} \, dx}{15 d^2}\\ &=-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{(b c) \operatorname{Subst}\left (\int \frac{(d+e x)^{3/2} (-3 d+2 e x)}{x^3 \left (1+c^2 x\right )} \, dx,x,x^2\right )}{30 d^2}\\ &=-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{(b c) \operatorname{Subst}\left (\int \frac{\sqrt{d+e x} \left (\frac{1}{2} d \left (12 c^2 d-e\right )+\frac{1}{2} e \left (3 c^2 d+8 e\right ) x\right )}{x^2 \left (1+c^2 x\right )} \, dx,x,x^2\right )}{60 d^2}\\ &=\frac{b c \left (12 c^2 d-e\right ) \sqrt{d+e x^2}}{120 d x^2}-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{(b c) \operatorname{Subst}\left (\int \frac{-\frac{1}{4} d \left (24 c^4 d^2-20 c^2 d e-15 e^2\right )-\frac{1}{4} e \left (12 c^4 d^2-7 c^2 d e-16 e^2\right ) x}{x \left (1+c^2 x\right ) \sqrt{d+e x}} \, dx,x,x^2\right )}{60 d^2}\\ &=\frac{b c \left (12 c^2 d-e\right ) \sqrt{d+e x^2}}{120 d x^2}-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{\left (b c \left (c^2 d-e\right )^2 \left (3 c^2 d+2 e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\left (1+c^2 x\right ) \sqrt{d+e x}} \, dx,x,x^2\right )}{30 d^2}+\frac{\left (b c \left (24 c^4 d^2-20 c^2 d e-15 e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{d+e x}} \, dx,x,x^2\right )}{240 d}\\ &=\frac{b c \left (12 c^2 d-e\right ) \sqrt{d+e x^2}}{120 d x^2}-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{\left (b c \left (c^2 d-e\right )^2 \left (3 c^2 d+2 e\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{c^2 d}{e}+\frac{c^2 x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{15 d^2 e}+\frac{\left (b c \left (24 c^4 d^2-20 c^2 d e-15 e^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{d}{e}+\frac{x^2}{e}} \, dx,x,\sqrt{d+e x^2}\right )}{120 d e}\\ &=\frac{b c \left (12 c^2 d-e\right ) \sqrt{d+e x^2}}{120 d x^2}-\frac{b c \left (d+e x^2\right )^{3/2}}{20 d x^4}-\frac{\left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{5 d x^5}+\frac{2 e \left (d+e x^2\right )^{3/2} \left (a+b \tan ^{-1}(c x)\right )}{15 d^2 x^3}-\frac{b c \left (24 c^4 d^2-20 c^2 d e-15 e^2\right ) \tanh ^{-1}\left (\frac{\sqrt{d+e x^2}}{\sqrt{d}}\right )}{120 d^{3/2}}+\frac{b \left (c^2 d-e\right )^{3/2} \left (3 c^2 d+2 e\right ) \tanh ^{-1}\left (\frac{c \sqrt{d+e x^2}}{\sqrt{c^2 d-e}}\right )}{15 d^2}\\ \end{align*}

Mathematica [C]  time = 0.508839, size = 413, normalized size = 1.84 \[ \frac{-\sqrt{d+e x^2} \left (8 a \left (3 d^2+d e x^2-2 e^2 x^4\right )+b c d x \left (d \left (6-12 c^2 x^2\right )+7 e x^2\right )\right )+b c \sqrt{d} x^5 \log (x) \left (24 c^4 d^2-20 c^2 d e-15 e^2\right )-b c \sqrt{d} x^5 \left (24 c^4 d^2-20 c^2 d e-15 e^2\right ) \log \left (\sqrt{d} \sqrt{d+e x^2}+d\right )+4 b x^5 \left (c^2 d-e\right )^{3/2} \left (3 c^2 d+2 e\right ) \log \left (-\frac{60 c d^2 \left (\sqrt{c^2 d-e} \sqrt{d+e x^2}+c d-i e x\right )}{b (c x+i) \left (c^2 d-e\right )^{5/2} \left (3 c^2 d+2 e\right )}\right )+4 b x^5 \left (c^2 d-e\right )^{3/2} \left (3 c^2 d+2 e\right ) \log \left (-\frac{60 c d^2 \left (\sqrt{c^2 d-e} \sqrt{d+e x^2}+c d+i e x\right )}{b (c x-i) \left (c^2 d-e\right )^{5/2} \left (3 c^2 d+2 e\right )}\right )-8 b \tan ^{-1}(c x) \sqrt{d+e x^2} \left (3 d^2+d e x^2-2 e^2 x^4\right )}{120 d^2 x^5} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + e*x^2]*(a + b*ArcTan[c*x]))/x^6,x]

[Out]

(-(Sqrt[d + e*x^2]*(8*a*(3*d^2 + d*e*x^2 - 2*e^2*x^4) + b*c*d*x*(7*e*x^2 + d*(6 - 12*c^2*x^2)))) - 8*b*Sqrt[d
+ e*x^2]*(3*d^2 + d*e*x^2 - 2*e^2*x^4)*ArcTan[c*x] + b*c*Sqrt[d]*(24*c^4*d^2 - 20*c^2*d*e - 15*e^2)*x^5*Log[x]
 - b*c*Sqrt[d]*(24*c^4*d^2 - 20*c^2*d*e - 15*e^2)*x^5*Log[d + Sqrt[d]*Sqrt[d + e*x^2]] + 4*b*(c^2*d - e)^(3/2)
*(3*c^2*d + 2*e)*x^5*Log[(-60*c*d^2*(c*d - I*e*x + Sqrt[c^2*d - e]*Sqrt[d + e*x^2]))/(b*(c^2*d - e)^(5/2)*(3*c
^2*d + 2*e)*(I + c*x))] + 4*b*(c^2*d - e)^(3/2)*(3*c^2*d + 2*e)*x^5*Log[(-60*c*d^2*(c*d + I*e*x + Sqrt[c^2*d -
 e]*Sqrt[d + e*x^2]))/(b*(c^2*d - e)^(5/2)*(3*c^2*d + 2*e)*(-I + c*x))])/(120*d^2*x^5)

________________________________________________________________________________________

Maple [F]  time = 0.881, size = 0, normalized size = 0. \begin{align*} \int{\frac{a+b\arctan \left ( cx \right ) }{{x}^{6}}\sqrt{e{x}^{2}+d}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)^(1/2)*(a+b*arctan(c*x))/x^6,x)

[Out]

int((e*x^2+d)^(1/2)*(a+b*arctan(c*x))/x^6,x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)*(a+b*arctan(c*x))/x^6,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 6.67949, size = 2593, normalized size = 11.58 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)*(a+b*arctan(c*x))/x^6,x, algorithm="fricas")

[Out]

[-1/240*(4*(3*b*c^4*d^2 - b*c^2*d*e - 2*b*e^2)*sqrt(c^2*d - e)*x^5*log((c^4*e^2*x^4 + 8*c^4*d^2 - 8*c^2*d*e +
2*(4*c^4*d*e - 3*c^2*e^2)*x^2 - 4*(c^3*e*x^2 + 2*c^3*d - c*e)*sqrt(c^2*d - e)*sqrt(e*x^2 + d) + e^2)/(c^4*x^4
+ 2*c^2*x^2 + 1)) + (24*b*c^5*d^2 - 20*b*c^3*d*e - 15*b*c*e^2)*sqrt(d)*x^5*log(-(e*x^2 + 2*sqrt(e*x^2 + d)*sqr
t(d) + 2*d)/x^2) - 2*(16*a*e^2*x^4 - 6*b*c*d^2*x - 8*a*d*e*x^2 + (12*b*c^3*d^2 - 7*b*c*d*e)*x^3 - 24*a*d^2 + 8
*(2*b*e^2*x^4 - b*d*e*x^2 - 3*b*d^2)*arctan(c*x))*sqrt(e*x^2 + d))/(d^2*x^5), 1/240*(8*(3*b*c^4*d^2 - b*c^2*d*
e - 2*b*e^2)*sqrt(-c^2*d + e)*x^5*arctan(-1/2*(c^2*e*x^2 + 2*c^2*d - e)*sqrt(-c^2*d + e)*sqrt(e*x^2 + d)/(c^3*
d^2 - c*d*e + (c^3*d*e - c*e^2)*x^2)) - (24*b*c^5*d^2 - 20*b*c^3*d*e - 15*b*c*e^2)*sqrt(d)*x^5*log(-(e*x^2 + 2
*sqrt(e*x^2 + d)*sqrt(d) + 2*d)/x^2) + 2*(16*a*e^2*x^4 - 6*b*c*d^2*x - 8*a*d*e*x^2 + (12*b*c^3*d^2 - 7*b*c*d*e
)*x^3 - 24*a*d^2 + 8*(2*b*e^2*x^4 - b*d*e*x^2 - 3*b*d^2)*arctan(c*x))*sqrt(e*x^2 + d))/(d^2*x^5), 1/120*((24*b
*c^5*d^2 - 20*b*c^3*d*e - 15*b*c*e^2)*sqrt(-d)*x^5*arctan(sqrt(-d)/sqrt(e*x^2 + d)) - 2*(3*b*c^4*d^2 - b*c^2*d
*e - 2*b*e^2)*sqrt(c^2*d - e)*x^5*log((c^4*e^2*x^4 + 8*c^4*d^2 - 8*c^2*d*e + 2*(4*c^4*d*e - 3*c^2*e^2)*x^2 - 4
*(c^3*e*x^2 + 2*c^3*d - c*e)*sqrt(c^2*d - e)*sqrt(e*x^2 + d) + e^2)/(c^4*x^4 + 2*c^2*x^2 + 1)) + (16*a*e^2*x^4
 - 6*b*c*d^2*x - 8*a*d*e*x^2 + (12*b*c^3*d^2 - 7*b*c*d*e)*x^3 - 24*a*d^2 + 8*(2*b*e^2*x^4 - b*d*e*x^2 - 3*b*d^
2)*arctan(c*x))*sqrt(e*x^2 + d))/(d^2*x^5), 1/120*(4*(3*b*c^4*d^2 - b*c^2*d*e - 2*b*e^2)*sqrt(-c^2*d + e)*x^5*
arctan(-1/2*(c^2*e*x^2 + 2*c^2*d - e)*sqrt(-c^2*d + e)*sqrt(e*x^2 + d)/(c^3*d^2 - c*d*e + (c^3*d*e - c*e^2)*x^
2)) + (24*b*c^5*d^2 - 20*b*c^3*d*e - 15*b*c*e^2)*sqrt(-d)*x^5*arctan(sqrt(-d)/sqrt(e*x^2 + d)) + (16*a*e^2*x^4
 - 6*b*c*d^2*x - 8*a*d*e*x^2 + (12*b*c^3*d^2 - 7*b*c*d*e)*x^3 - 24*a*d^2 + 8*(2*b*e^2*x^4 - b*d*e*x^2 - 3*b*d^
2)*arctan(c*x))*sqrt(e*x^2 + d))/(d^2*x^5)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b \operatorname{atan}{\left (c x \right )}\right ) \sqrt{d + e x^{2}}}{x^{6}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)**(1/2)*(a+b*atan(c*x))/x**6,x)

[Out]

Integral((a + b*atan(c*x))*sqrt(d + e*x**2)/x**6, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{e x^{2} + d}{\left (b \arctan \left (c x\right ) + a\right )}}{x^{6}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)^(1/2)*(a+b*arctan(c*x))/x^6,x, algorithm="giac")

[Out]

integrate(sqrt(e*x^2 + d)*(b*arctan(c*x) + a)/x^6, x)